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Chemically frozen phase separation in an adsorbed layer
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A mechanism for-the formation of adsorbate islands on a surface is proposed. It is based on the freezing of
the phase separation in the adsorbed fluid, controlled by adsorption-desorption kinetics. The description relies
on the Cahn-Hilliard equation complemented by source terms of chemical origin. In the weak segregation
regime the model produces harmonic hexagonal or striped structures. Amplitude equations resulting from a
weakly nonlinear approach give excellent agreement with the numerical simulations to explain the pattern
competition. The high segregation regime is studied numerically producing structures of analog symmetries.

PACS number(s): 68.45.Da, 05.70.Fh, 64.60.My

There is growing experimental [1-4] and numerical
[4—6] evidence of island formation in adsorbed layers. Un-
derstanding this phenomenon is of great significance since it
may strongly affect the efficiency of heterogeneous catalytic
reactions [2,6]. We show how the interplay between local
kinetic processes and a simultaneously occurring phase tran-
sition [7,8] may provide a suitable mechanism for the forma-
tion of such frozen patterned states. In our model, we shall
take into account both the kinetic exchanges between the
surface and the gas bathing it, as well as the thermodynamics
of phase coexistence over the surface. Below a critical tem-
perature T, the lateral attractive interactions between ad-
sorbed molecules may induce a “two-dimensional liquid-
gas” transition in the chemisorbed overlayer which couples
to the ongoing exchange processes.

In order to describe the kinetics of adsorption and acti-
vated desorption we introduce source terms into the mass
balance equation. The time evolution of the surface coverage
6 (0<6<1) is then given by the continuity equation
90/9t=Kn[ 08]—V -J. Here, J(r)=—MV u(r) is the mass
current flow due to spatial inhomogeneities of the chemical
potential where M is the surface mobility which is supposed
to be constant. Kn[ ]=k,qps(1— 0)— k46 is the nonlin-
ear reaction rate [9], where p is the pressure of the gas above
the adsorbed layer and s the sticking coefficient. Also k4 and
k4es are, respectively, the adsorption and desorption rate con-
stants. Assuming that spatial inhomogeneities vary slowly
over the range of molecular interactions, the free energy can
be cast in the usual Landau-Ginzburg form:

oF

F{0}=J dr[fL(0)+K(v0)z]; = ——5—0

The free energy f;(6) of the corresponding homogeneous
system is taken with the usual double-well shape and
k(V 6)? is the first order contribution to the total free energy
due to coverage gradients. In scaled variables, the resulting
equation of motion takes the following form, which is an
extension of the well known Cahn-Hilliard equation [10]:
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. =P(-0)- P+MVHa[(t—1)6* +%16*3]
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The order parameter is the distance from the critical cover-
age 0*=0—6,=60—3 and t=T/T,. Also, ay=4kgT, and
K=kBTC§(2) where &, is a phenomenological length related to
the range of the interactions. Under isothermal conditions,
P =(k,45/kges)p— the reduced pressure of the gas phase—is
the only externally tunable parameter in the model. Accord-
ing to its value, the dynamic exchange processes between the
surface and reservoir may force the system to locally assume
a coverage such that phase coexistence becomes unstable.
Separation in two phases then follows [11] until a new bal-
ance between reaction and mass flow is reached. The linear
dynamics of perturbations with wave number g, around the
homogeneous steady state 6g, that is the solution of
Kn[ 05]1=0, is determined by the amplification factor

I*fy N
W) q2—2MKq4,
0

S

a[q,as(P),P]=—h—M(

where h=P+26; is the contribution from the reaction ki-
netics. At any fixed temperature below 7., =0 defines a
closed instability region in the P—gqg plane. By increasing
(decreasing) P, one crosses the boundary at P, (P_) corre-
sponding to an instability with wave number
(qf)4=hf/21l:1k, where h> =P +2605(P.). Then, as
shown in Fig. 1, modulated perturbations with wave numbers
within a given range will grow. One notices the appearance
of a lower cut-off value g _ in the dispersion relation, due to
the contribution of 4. Thus, contrary to ordinary spinodal
decomposition [12], soft modes are actually damped [13],
meaning that the competition between adsorption and de-
sorption acts to freeze the phase separation and prevent com-
plete domain coarsening. The locus of the threshold points
(P, ,q.) at different temperatures defines a marginal stability
curve, within the spinodal region, through the equation
t=(1—q2&)/(1+4¢2), where from now on ¢, = 0% (P,).
As a result, the unstable region is asymmetric with respect to

R4616 © 1995 The American Physical Society



52 CHEMICALLY FROZEN PHASE SEPARATION IN AN ...

.0 . .
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

FIG. 1. Behavior of the amplification factor a as one ap-
proaches and crosses the marginal stability curve for £=0.95. The
values are P=0.98, 0.96, 0.9417 (marginality), and 0.92, respec-
tively.

0¥ =0 but the main effect due to the chemistry is to shift
t*, the maximum temperature for the onset of the instability,
below t=1.

We have numerically solved Eq. (1) using an explicit Eu-
ler scheme on two-dimensional square grids of size 256
X 256. We also performed integrations on smaller grids to
ensure that finite size effects were not relevant. We fixed the
temperature at t=0.95 and chose £,=2X1073, Ma,=3,
both sharing the units of the spatial discretization length. The
initial condition was prepared by perturbing the steady state
with uniformly distributed random noise. In the early stages
(linear regime), the dynamics of phase separation within the
unstable region is dominated by the most unstable mode
qm given by the linear stability analysis. The circularly aver-
aged structure factor S(g,7) then presents a broad peak cor-
responding to a wide distribution of interdroplet distances
and domain sizes at early times. As domains coarsen, the
peak increases in height, sharpens, and drifts towards smaller
wave numbers. In this case though, it does not approach
g =0 as it would in the absence of chemistry [12]. Instead it
remains blocked at an asymptotic value g, as we enter the
final saturation regime where, in the case of droplet morphol-
ogy, all droplets approach the same size. Later on, the system
proceeds to slowly eliminate a large number of extremely
robust defects generated at early times. The asymptotic state
consists of hexagonally packed droplets for off-critical
quenches [Figs. 2(a) and 2(c)] and interconnected, labyrin-
thinelike structures for near-critical quenches [Fig. 2(b)]. A
completely different type of domain growth dynamics is ob-
served close, but still outside the instability region. Droplets
begin to nucleate randomly and attain their saturation radius
independently of each other much faster than in the previous
case. Then, ordered phase separated domains emerge from
the background of linearly stable steady state coverage [Fig.
2(d)]. Finally, these domains merge and invade the whole
system leading also to an extended pattern displaying hex-
agonal symmetry.

We found no evidence, namely in the form of dynamic
scaling laws for the structure factor, for the existence of a
single dominant length scale in the coarsening regime prior
to saturation. Instead, multiple competitive characteristic
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FIG. 2. (a) Quasihexagonal array of low coverage droplets at
P=0.8 (65=0.08), at late times (7=246.0). (b) Interconnected
structure at P=0.54 (65 =0.013) and 7=170.0. (c) Array of high
coverage droplets at P=0.4 (05=—0.037) and 7=250.0. (d)
Emergence of ordered domains at P=0.96 (7=0.8). Dark areas
correspond to low coverage and light regions to high coverage. For
example, in (d), black circles, white regions, and extended gray
areas correspond, respectively, to coverage values of 0.3, 0.7, and
0.61 (= 6y).

lengths seem to be present. Among them, two are easily
identifiable and have unequivocal physical meaning: the
mean droplet radius R, characterizing the average size of
minority phase domains, and the average wave number de-
fined as g(7)=[dqqS(q,7)/fdqS(q,7), which character-
izes the inverse mean interdroplet distance. We followed the
time evolution of the mean radius R(7) and droplet number
N(7) by direct investigation over the grid [14]. For quenches
into the instability region R and g evolve in time as dis-
played in Fig. 3. The dynamics slows down as time evolves
and N, R, and g converge to their saturation values. Typi-
cally, saturation sets in sooner and coarsening rates are
higher for deeper quenches. Also, the saturated radius R, is
larger for deeper quenches whereas g, and N, increase
monotonically as the reduced pressure is increased. The ful-
fillment of the condition R~x'Y?G~!, x denoting the area
fraction of minority phase, defines the crossover time from
coarsening to saturation [15] and, finally, the quantity
R.G.x" 2 becomes a constant independent of the pressure.
These results strongly suggest that in frozen patterns it is the
difference in respective values of R that is primarily respon-
sible for the difference in coverage at late times. Recent ex-
periments in Langmuir films [16] show similar behavior.
The numerical results presented above were obtained in
the strong segregation regime where interfaces are sharp and
the amplitude saturates at values near the coexistence curve.
Close to t* there also exists a weak segregation regime
where profiles are harmonic. In this limit, weakly nonlinear
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FIG. 3. Comparative time evolution of the mean droplet radius e Y
R at P=0.8 (A) and the average wave number g at the same . Pe
pressure (A) and at P=0.4 (O). \ ;., »
analysis may be applied to Eq. (1) to address the problem of STRIPES

the competition between hexagons and stripes [17]. Then,
one writes the perturbations around the unstable steady state
as a superposition of three excited modes: §0=6— 65
=33_ A% ) with |q;|=¢, and q; + q,+q;=0. Stan-
dard perturbative methods allow to derive a set of coupled
evolution equations for the amplitudes A; and total phase
Q=Q,+Q,+Q; of the three modes, close either to the
upper (+) or the lower (—) threshold:

Ai:#i(fﬁ)Ai"' v (h)A; 4 c0sQ

_gEA?_gﬁp(A?+1+A?~1)Ai’ @)
Q=—Vr(¢)(2 A%A?/H Ai)sinQ, 3
iFj i

where i=1,2,3 and the indices are defined as modulo 3.
Here, ¢ stands for 6% (P) and ¢_ = 65 (P). Both the linear
uE(Pp)=—[h—hX+T($p>*— #-?)] and the quadratic cou-
pling coefficient ¥=(¢)=—2(1+T. ¢) depend on the bi-
furcation parameter ¢. Also g5 =T and gy,=2T"> where
I'>=4Maytqr*>1. Equations (2) and (3) admit a set of
steady state solutions with hexagonal symmetry (A;=Ay,
i=1,2,3 and ) =0,7) together with a phase invariant solu-
tion describing striped patterns (A;=Ag,A,=A3;=0). Hex-
agonal solutions with total phase == (H) are linearly
stable when v is negative, i.e., for ¢>—(I'7)~!. Alterna-
tively, solutions with =0 (HO) are only stable for
p<—(T7)"

Next we consider the bifurcation scenario that follows the
instability at the lower threshold, ¢, . A branch of HO pat-
terns appears before the threshold with a finite amplitude
(subcritical solution in the sense of bifurcation theory [17]).
It extends up to the upper threshold, ¢} [Fig. 4(a)]. On the
other hand, an H 7 branch bifurcates supercritically terminat-
ing abruptly at a point beyond the upper threshold. The sta-
bility limits for all hexagonal patterns, submitted to ampli-

FIG. 4. (a) Amplitudes of the weakly segregated structures as a
function of the bifurcation parameter ¢ at r=0.99505. Solid and
dashed curves correspond, respectively, to stable and unstable solu-
tions of Egs. (2) and (3). Symbols refer to the numerical integration
of Eq. (1) with the convention: A, A=H0; 4, O = stripes; V¥,
V=Hm; ®, O= homogeneous state. Empty symbols correspond
to the sequence obtained by adiabatically increasing ¢ beyond
¢, . The data represented by filled symbols result when similarly
decreasing ¢ below ¢ . Transitions between branches are repre-
sented by vertical arrows that delineate the hysteresis regions. (b)
Modulated structures on 128X 128 cellular grids. The gray scale
code is the same as in Fig. 2.

tude perturbations, are given by the roots of
#(#)=[v"(#)12(gxp+285)/(85 — Exp)>- This equation
has two real solutions ¢= ¢;,¢, and hexagons (both HO
and H ) are unstable within the range ¢;<¢<¢,. So, an
initially stable HO branch will lose stability at ¢ = ¢p; . How-
ever, because v~ (¢) changes sign between the above limits,
meaning that the solution =0 is no longer stable against
phase perturbations, the branch subsequently stabilized at
¢= ¢, is that with the complementary phase, i.e., Har [18].
Stripes are stable with respect to hexagons of any kind in the
range between the roots of /1,_(¢)=[v_(¢)]2g5/
(8p—&xnp)?- When increasing the value of the bifurcation
parameter ¢(P), the following sequence of patterns
emerges: the HO structure is followed by stripes while the
inverted hexagonal lattice, H 7, appears at still higher values
of ¢ until it finally relaxes to an homogeneous state. All
transitions are discontinuous and by reversing the variation
of the control parameter one backtracks through the various
structures by undergoing hysteresis loops. A reciprocal de-
scription applies, of course, if one takes as a reference the
upper threshold instead. Such a local perturbative analysis
give a reliable picture of global pattern selection as long as
the discrepancy between corresponding branches and stabil-
ity ranges remains small. This global picture is corroborated
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by the numerical integration of Eq. (1) [Figs. 4(a) and 4(b)].

Since ¢, which controls the sign of the quadratic term,
also determines, in the strong segregation region, the nature
of the (minority) droplet phase, we suggest using continuity
arguments, that hexagonal arrays of high (low) coverage
droplets are the extension of hexagons having total phase
0(7r) in the weak segregation region. In the same vein, the
structures displayed on Fig. 2(d), which appear before the
marginal stability point, are evidence for a subcritical bifur-
cation even in the strong segregation regime. Moreover,
droplet growth dynamics is substantially different for
quenches into the linearly unstable supercritical and in the
subcritical region. In the latter there is a total suppression of
the ripening process through evaporation-condensation
and/or collision-coalescence mechanisms.

In conclusion, the present model describes some pro-
cesses of island formation on catalytic surfaces. We summa-
rize the mechanism in the following way: the exchanges be-
tween surface and the gas tend to homogenize the spatial
distribution of adsorbed molecules. Since adsorption (de-
sorption) will preferentially take place in regions where cov-
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erage is lower (higher), the kinetics tends to mix the phases.
Therefore, long distance correlations are introduced in the
system and compete with the short-range attractions respon-
sible for the phase transition. These correlations seem to play
the same role (namely by slowing down the coarsening se-
lecting a finite wavelength and hexagonal or stripe symme-
tries) as long-range repulsive interactions [19] in systems
such as uniaxial ferromagnetic films [20], monomolecular
organic films and lipid monolayers [16,21]. The mesoscopic
nature of domain size is consistent with experimental evi-
dence that chemisorbed molecules are organized in relatively
small clusters with average sizes ranging from a few hun-
dreds to a few thousand particles [1,3].
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FIG. 2. (a) Quasihexagonal array of low coverage droplets at
P=0.8 (6;=0.08), at late times (7=246.0). (b) Interconnected
structure at P=0.54 (65=0.013) and 7=170.0. (c) Array of high
coverage droplets at P=04 (6;=-0.037) and 7=250.0. (d)
Emergence of ordered domains at P=0.96 (7=0.8). Dark areas
correspond to low coverage and light regions to high coverage. For
example, in (d), black circles, white regions, and extended gray
areas correspond, respectively, to coverage values of 0.3, 0.7, and
0.61 (= 65).
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FIG. 4. (a) Amplitudes of the weakly segregated structures as a
function of the bifurcation parameter ¢ at r=0.99505. Solid and
dashed curves correspond, respectively, to stable and unstable solu-
tions of Egs. (2) and (3). Symbols refer to the numerical integration
of Eq. (1) with the convention: A, A=H0; ¢, O = stripes; ¥,
V=Hm; @, O= homogeneous state. Empty symbols correspond
to the sequence obtained by adiabatically increasing ¢ beyond
¢_ . The data represented by filled symbols result when similarly
decreasing ¢ below ¢ . Transitions between branches are repre-
sented by vertical arrows that delineate the hysteresis regions. (b)
Modulated structures on 128X 128 cellular grids. The gray scale
code is the same as in Fig. 2.



